Reduced dimension space-time processing for multi-antenna wireless systems
نویسندگان
چکیده
The need for wireless communication systems has grown rapidly during the last few years. Moreover, there is a steady growth in the required data rates due to the fact that more and more users request high-bit-rate services. To meet those requirements, current and next-generation wireless systems and networks such as wireless LANs (e.g., IEEE 802.11a) will support much higher data rates compared with established standards. This is basically done by applying advanced transmission schemes and usage of bandwidth resources. Another very promising approach is the introduction of multiple antennas at one or both ends of a link to exploit the spatial dimension of signal transmission for improved link quality and enhanced system capacity. Smart antenna concepts are extensively discussed in this context. The application of concepts with multiple antennas necessitates the introduction of more advanced and computational expensive transmitter and receiver structures, where space-time (ST) processing techniques are required to carry out spatial and temporal information processing jointly. This article introduces a new ST processing concept to enable reduced dimension ST receiver signal processing. The signal dimension can be considerably reduced compared to the number of antennas by exploiting spatial correlation properties of the received antenna signals. The associated signal transformation applies the concept of the Karhunen-Loève transformation (KLT). A great advantage of the proposed ST processing concept over traditional multiple antenna approaches is the insensitivity of the algorithms to the antenna characteristics and antenna spacing, which allows the use of low-cost antennas. Another significant advantage of the proposed concept is more robust channel estimation due to spatial dimension reduction and the resulting limitation of estimation parameters. REDUCED DIMENSION SPACE-TIME PROCESSING FOR MULTI-ANTENNA WIRELESS SYSTEMS
منابع مشابه
Efficient Coding and Decoding Methods for Multi - Antenna Wireless Communication Systems
Title of Dissertation: EFFICIENT CODING AND DECODING METHODS FOR MULTI-ANTENNA WIRELESS COMMUNICATION SYSTEMS Zoltan Safar, Doctor of Philosophy, 2009 Dissertation directed by: Professor K. J. Ray Liu Department of Electrical and Computer Engineering As existing wireless communication systems and standards cannot fully support the new, emerging multimedia applications, the designers of future w...
متن کاملAntenna Miniaturization Using Fractals (RESEARCH NOTE)
Antenna Miniaturization Using Fractals Richa Garg, AP ECE Deptt., [email protected], J.C.D.C.O.E., Sirsa ABSTRACTThe use of fractal geometry in designing antenna has been a resent topic of interest. Fractal shape has their own unique characteristics that the improved antenna performance can be achieved without degrading the antenna properties. Modern telecommunication system requires antenn...
متن کاملMultiple Antenna Systems : Their Role and Impact in Future Wireless Access
Multiple antennas play an important role in improving radio communications. In view of this role, the area of multiple antenna communication systems is in the forefront of wireless research. This article reviews two key related aspects of multiple antenna communication systems: multiple access interference mitigation at the receiver via multi-user beamforming; and space-time modulation and codi...
متن کاملLinear space-time modulation in multiple-antenna channels
This thesis develops linear space–time modulation techniques for (multi-antenna) multi-input multi-output (MIMO) and multiple-input single-output (MISO) wireless channels. Transmission methods tailored for such channels have recently emerged in a number of current and upcoming standards, in particular in 3G and “beyond 3G” wireless systems. Here, these transmission concepts are approached prima...
متن کاملReduced Complexity Space-Time Optimum Processing
New emerging space-time processing technologies promise a significant performance increase of wireless communication systems. The particular application and scenario strongly influences the amount of possible performance and capacity increase if antenna arrays are deployed at the basestation (BS) and/or at the mobile terminal (MT). The achievable gain is mainly determined by the spatial correla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Wireless Commun.
دوره 9 شماره
صفحات -
تاریخ انتشار 2002